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Abstract. Disordered systems exhibiting exponential localization are mapped to anisotropic spin chains
with localization length being related to the anisotropy of the spin model. This relates localization phe-
nomenon in fermions to the rotational symmetry breaking in the critical spin chains. One of the intriguing
consequence is that the statement of Onsager universality in spin chains implies universality of the localized
fermions where the fluctuations in localized wave functions are universal. We further show that the fluctu-
ations about localized nonrelativistic fermions describe relativistic fermions. This provides a new approach
to understand the absence of localization in disordered Dirac fermions. We investigate how disorder affects
well known universality of the spin chains by examining the multifractal exponents. Finally, we examine
the effects of correlations on the localization characteristics of relativistic fermions.

PACS. 75.10.Jm Quantized spin models – 75.40.Gb Dynamic properties (dynamic susceptibility, spin
waves, spin diffusion, dynamic scaling, etc.) – 68.35.Rh Phase transitions and critical phenomena

Two-dimensional Ising model is one of the few examples
of exactly solvable many body systems [1]. The model
exhibits a phase transition at finite temperature char-
acterized by universal exponents defining a universality
class, the Onsager universality which describes the phase
transitions for anisotropic XY models. Interestingly, the
Onsager universality also describes a quantum phase tran-
sition at zero temperature, driven by quantum fluctua-
tions, of one-dimensional quantum anisotropic XY spin
chains in a transverse field [2]. These quantum models be-
long to a small family of integrable Hamiltonians that have
attracted both theoreticians as well as experimentalists.
Heart of integrability of these many body quantum spin
problem is a mapping between spin and fermions which re-
lates interacting XY spin chain withO(1) symmetry to the
fermion Hamiltonian that are quadratic in fermions. The
spin-fermion correspondence has proven to be extremely
important also for the case of disordered magnetic field
as the quadratic fermion Hamiltonian can be numerically
diagonalized with extreme precision [4]. Recent studies
have shown that the a large variety of disordered quan-
tum chains with O(1) spin symmetry are still described
by the Onsager universality [3,4].

In this paper, we show a new type of spin-fermion map-
ping where disordered fermions exhibiting exponential lo-
calization are shown to be related to anisotropic spin chain
in a disordered magnetic field at the onset to long range
order (LRO). This correspondence, valid exclusively for
exponentially localized systems, provides new insight into
various issues relevant to disordered fermion as well as
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spin models. In particular we exploit well established uni-
versality hypothesis of spin systems to make important
statements about fermion problems. Firstly, the root of
recently observed universality in localized fermions [9,10]
is traced to the Onsager universality of the spin systems.
Another interesting result is a correspondence between the
relativistic and the nonrelativistic fermions in the presence
of disorder. It is shown that the relativistic fermions can
be viewed as the fluctuations in the exponentially local-
ized solutions of the nonrelativistic fermions. This pro-
vides a new approach for understanding the absence of
localization in disordered Dirac fermions which has been
the subject of various recent studies [11]. We argue that
the long range magnetic correlations provide mechanism
for delocalization of relativistic fermions thus obtaining a
deeper understanding of the absence of localization. In ad-
dition to obtaining intuitively appealing picture of some
surprising results of disordered fermions, we also obtain a
generalization of universality statement of the critical ex-
ponents for disordered spin models. Finally, we examine
how the correlations affect the localization characteristics
and show the possibility of delocalization of relativistic
fermions analogous to the corresponding nonrelativistic
case.

Although the setting we describe is quite general in
the context of disordered systems, for concreteness we
will consider quasiperiodic disorder where the lattice prob-
lem for nonrelativistic fermion is described by the Harper
equation [12],

ψn−1 + ψn+1 + 2λVnψn = Eψn. (1)
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Here Vn = cos(θn) where θn = (2πσgn + φ). The σg is
an irrational number describing competing length scales
in the problem and φ is a constant phase factor. Harper
equation, in one-band approximation describes Bloch elec-
trons in a magnetic field. This problem frequently arises
in many different physical contexts, every time emerging
with a new face to describe another physical application.
The problem is solvable by Bethe-ansatz [5]: there is an
algebraic Bethe-ansatz equation for the spectrum. It was
shown that at some special points in the spectrum, e.g.
at the mid-band points, the Hamiltonian in certain gauge
can be written as a linear combination of generators of
a quantum group called Uq(sl2). It also describes some
properties of the integer quantum Hall effect: it showed
that Kubo-Greenwood formula for the conductance of any
filled isolated band is an expression for a topological in-
variant, and is an integer multiple of e2/h. It was further
shown by Avron et al. [6] that it is a topological invariant
that defines the first Chern class of the mapping of the
Brillouin zone (a two-dimensional torus) onto a complex
projective space of the wave functions.

In contrast to usual Anderson problem describing lo-
calized particle in a random potential, the Harper equa-
tion exhibits localization-delocalization transition pro-
vided σg is an irrational number with good Diophantine
properties (i.e. badly approximated by rational numbers).
This transition at λ = 1, the self-dual point, where the
model and its Fourier transform become identical, has
been characterized with singular continuous states and
spectra. Richness and complexity of the critical point de-
scribing localization transition has been studied in great
detail by various renormalization group approaches [7,8].
Recently, it was shown that multifractal characteristics
continue to exist beyond the critical point [9] through-
out the localized phase. This hidden complexity of the
localized phase is brought to light after one factors out
the exponentially decaying envelope. The localized wave
functions with inverse localization length ξ−1 = log(λ) is
rewritten as [9],

ψn = e−γ|n|ηn (2)

where γ = ξ−1. The tight binding model (tbm) describing
the fluctuations ηn in the exponentially decaying envelope
is given by the following pair of equations,

e−γηr
n+1 + eγηr

n−1 + 2λVnη
r
n = Eηr

n

eγηl
n+1 + e−γηl

n−1 + 2λVnη
l
n = Eηl

n. (3)

Here ηr and ηl respectively describe the fluctuations to
the right and to the left of the localization center. An ex-
act renormalization scheme [9] showed that these fluctu-
ations exhibit universal features (see Fig. 1) described by
the strong coupling fixed point. Hence, localized phase is
characterized by universal fractal characteristics described
by λ→ ∞ limit of the equation. These results were further
confirmed by rigorous mathematical analysis [10]. Hence
the strength of the disorder which determines the localiza-
tion length can be factored out making universal aspects
transparent.

Fig. 1. Absolute value of the fluctuations for Harper equation
for E = 0 states with φ = 0.25 and σg = (

�
(5) − 1)/2. At the

Fibonacci sites, we see period-6 behavior (period-3 in absolute
value): |ηFm | = |ηFm+3 | which is independent of λ.

A new revelation that provides intuitive understand-
ing of the strong coupling fixed point of Harper is ob-
tained by relating the fluctuations described by (3) to the
anisotropic spin chain at the onset to LRO. It turns out
that the equations (3) for E = 0 describe quasiparticle
excitations of a critical anisotropic XY spin-1/2 chain in
a transverse magnetic field, given by the following spin
Hamiltonian

H = −
∑

[e−γσx
nσ

x
n+1 + eγσy

nσ
y
n+1 + 2λVnσ

z
n]. (4)

The σk, k = x, y are the Pauli matrices. The e−γ and
eγ respectively describe the exchange interactions along
the x and the y directions in spin space. Using Jordan-
Wigner transformation, the interacting spin problem can
be mapped to non-interacting spinless fermion problem [2]
where fermions are the quasiparticle excitations of the spin
chain obeying the following coupled equations,

e−γη1
l+1 + eγη1

l−1 + 2λVlη
1
l = Eη2

l

eγη2
l+1 + e−γη2

l−1 + 2λVlη
2
l = Eη1

l . (5)

At the onset to LRO, the excitation spectrum be-
comes gap-less and hence for the E = 0, the massless
mode, the above two equations are degenerate coincid-
ing with the equation (3). Therefore, the massless exci-
tations of the critical anisotropic spin chain describe the
fluctuations in the exponentially localized excitations of
the isotropic chain where the anisotropy parameter is re-
lated to the localization length.

Therefore, the localization length like the anisotropy
parameter is an irrelevant variable and hence the state-
ment of strong coupling universality of the Harper equa-
tion is synonymous with the statement that anisotropic
spin chain is in the universality class of the Onsager uni-
versality. In short, we establish an equivalence between
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Ising fixed point of the anisotropic spin chain and the
strong coupling fixed point of the Harper equation and
thus provide a simple interpretation of the strong coupling
universality of the Harper equation. It should be noted
that the spin-fermion mapping provides a new method
to determine the localization length of the tbms in the
presence of disorder as the equation for the critical point
determines the localization length.

It should be noted that the Fluctuations in the local-
ized wave functions of the fermions are universal for all val-
ues of energy [9] and quasiparticle excitations of the spin
chains are also believed to be universal for all energies.
However, we have been able to establish this equivalence
only for E = 0 state, the massless mode responsible for
LRO. The question whether the universality of all states
in equations (3) and (5) are related is an interesting open
question.

We next show that the fluctuation ηn obey Dirac equa-
tion for zero energy states. In the long wave length limit,
the equations(3) reduce to the Dirac equation. We replace
n by x and write ηn±1 = e±ipη(x), where p is the momen-
tum canonically conjugate to x. The equation (4) for the
fluctuations for E = 0 state can be described by the fol-
lowing non-Hermitian Hamiltonian Hfluc and its adjoint,
Hfluc = e−γeip + eγe−ip + 2λV (x). In the limit (p → 0),
the system for E = 0 reduces to the Dirac equation,

[gσxp− i(2λV (x) + 2 cosh(γ))σy]η(x) = 0 (6)

where η(x) is a two-dimensional spinor η(x) =
(ηl(x), ηr(x)). It is interesting that the two-component
structure of Dirac spinor arises naturally when we consider
fluctuations about exponentially localized wave functions.
Here g ≡ 2 sinh(γ) is the velocity of the Dirac fermions
while the mass of the Dirac fermions m(x) = 2((λV (x) +
cosh(γ)). Therefore, on a lattice, the Dirac fermions with
disordered mass are the fluctuations of the nonrelativistic
localized fermions. This would imply the absence of expo-
nential localization for relativistic fermions. The defiance
of localization by relativistic fermions has been the sub-
ject of various studies and our analysis provides a simple
way to understand this intriguing result.

Next, we address the question whether the strong cou-
pling fixed point which describes localized phase of Harper
equation, the critical Ising model and the Dirac fermions
with quasiperiodic disorder, implies universal multifrac-
tal exponents. We compute the f(α) curve (Fig. 2) de-
scribing the multifractal spectrum associated with the
self-similar wave function or the inverse participation ra-

tios P, P(q,N) =
∑ |ηn|2q

∑ |ηn|2 ∼ N−τ(q), α = dτ
dq and

f(α) = αq − τ(q) The free energy function τ(q) and its
Legendre transform f(α) were found to be λ independent
only for for positive values of q and hence only left half
of the f(α) curve is universal. Therefore, for quasiperiodic
spin chains at the onset to LRO, scaling exponents for only
positive moments of the participation ratio are universal.
This can be viewed as a generalization of the universality
statements of periodic spin chains to disordered spins.

Fig. 2. Numerically obtained f(α) curves for λ → ∞ (solid
curve) and λ = 1.5 (lines with crosses).

Finally we investigate the role on correlations on the
localization characteristics of massless spin excitations
which obey Dirac equation. The fact that correlations
would result in delocalization as originally shown by a
random-dimer model [13] is an important result in local-
ization theory [13]. For quasiperiodic disorder, dimer-type
correlations can be introduced by replacing θn = 2πσgn in
V (θn) by the iterates of the supercritical standard map,
describing Hamiltonian systems with two degrees of free-
dom [14]

θn+1 + θn−1 − 2θn = −K

2π
sin(2πθn). (7)

We use iterates that describe golden-mean cantorus (the
remanent of the KAM torus beyond the onset to global
stochasticity) which has been shown to exhibit dimer-type
correlations, and leads to Bloch-type states for the non-
relativistic fermions [14]. Here, we will confine to the Ising
limit (can be obtained from (5) using γ → ∞ and rescaling
the parameters), described by,

η1
n+1 + 2λ cos(2πθn)η1

n = Eη2
n

η2
n−1 + 2λ cos(2πθn)η2

n = Eη1
n. (8)

We determine the critical λ (the threshold for the onset
to magnetic transition) as a function of K, the nonlinear-
ity parameter of the two-dimensional map [2]. The local-
ization characteristics of the massless mode of the Ising
model are studied using an exact RG methodology [8]. In
this approach, quasiperiodic models such as equation (7)
with golden-mean incommensurability are decimated to
a renormalized model defined only at the Fibonacci sites.
Renormalization flow describing renormalized couplings at
the Fibonacci sites provides an extremely accurate tool to
distinguish extended, localized and critical states. Trivial
fixed points of the RG describe extended states while crit-
ical states correspond to nontrivial fixed points. As shown
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Fig. 3. (a) Critical λ as a function of K for the Ising model.
(b) RG 6-cycle showing the variation in the renormalized cou-
pling at Fibonacci iteration of the RG flow for E = 0.

in Figure 3, nontrivial 6-cycle (which also corresponds to
six-cycle of the wave function ηn as shown in Fig. 1) de-
generates to trivial fixed points at certain special param-
eter values. The origin of these trivial fixed points, has
been traced to a hidden dimer in the quasiperiodic iterates
describing the golden-cantorus [14]. At these points, the
relativistic massless mode of the Ising model is ballistic.
Therefore, relativistic fermions may become delocalized
analogous to the nonrelativistic case due to dimer-type
correlations.

Figure 3 shows an interesting interplay between the
magnetic transition and the ballistic transition due to
dimer-type correlations: the ballistic transitions where the
relativistic mode is propagating seems to be sandwiched
between two peaks corresponding to strong enhancement
of (possibility divergent) strength of the inhomogeneous
field needed for the onset to LRO. This phenomena again
confirms the view that spin-fermion relationship may be
an extremely useful means to understand the richness and
complexity underlying a variety of new phenomena in dis-
ordered systems.

One-dimensional quantum spin chain in a transverse
field at the onset to LRO describes two-dimensional lay-
ered Ising model. Therefore, our study relates univer-
sal aspects, described by Onsager universality, of two-
dimensional Ising model to the universal aspects of the
two-dimensional Bloch electron problem described by the
Harper equation. This paper establishes a relationship be-
tween two important systems where geometry and integra-
bility are of central importance. We believe that our re-
sults are valid for a variety of disorders including a large
class of pseudorandom as well as random cases.

Finally, it should be noted that spin-fermion corre-
spondence is also valid for time-dependent models. Kicked
Harper model that has been extensively studied in quan-
tum chaos literature [15,16] also describes XY spin chain
in a periodically kicked inhomogeneous magnetic field [17].
By exploiting the spin-fermion correspondence, various
new results in the kicked Harper model can provide a new
way to understand many surprising results [18]. One of
the interesting results is the independence of the critical
exponents with respect to the discommensuration param-
eter σg in the limit σg → 0. This defines a new aspect of
the usual universality statements for the spin systems at
the onset to magnetic transition and hence broadens the
concept of universality to include disorder as well as time
dependence.
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